Bounds for seismic dispersion and attenuation in poroelastic rocks
نویسنده
چکیده
Recently, Hashin-Shtrikman bounds for bulk and shear moduli of elastic composites have been extended to the moduli of composite viscoelastic media. Since viscoelastic moduli are complex, the viscoelastic bounds form a closed curve on a complex plane. We apply these general viscoelastic bounds to a particular case of a porous solid saturated with a Newtonian fluid. Our analysis shows that for poroelastic media, the viscoelastic bounds for the bulk modulus are represented by a semi-circle and a segment of the real axis, connecting formal HS bounds (computed for an inviscid fluid). Furthermore, these bounds are independent of frequency and realizable. We also show that these viscoelastic bounds account for viscous shear relaxation and squirt-flow dispersion, but do not account for Biot’s global flow dispersion.
منابع مشابه
Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks
S U M M A R Y Using a numerical approach, we explore wave-induced fluid flow effects in partially saturated porous rocks in which the gas–water saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presen...
متن کاملSeismic frequency measurement of velocity and attenuation
Velocity dispersion and attenuation in rocks are coupled properties that depend on the pore fluids and fluid flow. Attenuation shows a peak at high partial gas saturation. The amplitude of this peak increases with frequency. With full saturation, velocities rise but dispersion remains approximately constant. A substantial frequency shift occurs with decreasing permeability or fluid mobility. Th...
متن کاملFrequency Dependent Elastic and Anelastic Properties of Clastic Rocks
This study focuses on measurements of clastic rocks ranging from 3 Hz up to 500 kHz in the laboratory and their application to well log analysis and a time-lapse study in the North Sea. Measurements of elastic properties over a large frequency spectrum can provide a better understanding of the dispersion and attenuation mechanisms in rocks and help to predict and model these effects. Sandstones...
متن کاملDynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks_ Theoretical model
Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori–Tanaka scheme), fluid dyna...
متن کاملeismic wave attenuation and dispersion resulting from wave-induced ow in porous rocks — A review
One major cause of elastic wave attenuation in heterogeneous porous media is wave-induced flow of the pore fluid between heterogeneities of various scales. It is believed that for frequencies below 1 kHz, the most important cause is the wave-induced flow between mesoscopic inhomogeneities, which are large compared with the typical individual pore size but small compared to the wavelength. Vario...
متن کامل